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Abstract. Service continuity is the capability to provide persistent and 
reliable service, with graceful degradation in the presence of changes. We 
contend that the implicit need for such a capability is the primary driver 
of middleware efforts today. This is particularly important for networked 
control systems interacting with the real world, as they have strict safety 
requirements. Such systems have to tolerate numerous changes, such as 
component faults, node failures, and software upgrades, while maintain- 
ing operational integrity. 
We focus on providing service continuity for networked control systems. 
The various changes in such systems are classified and illustrated using 
our traffic control testbed. We then describe how Etherware, our middle- 
ware for networked control, handles these changes. Insights into co-design 
of Etherware, in conjunction with an implementation of our testbed, are 
presented. The ability of Etherware to provide service continuity, and 
the associated performance, is demonstrated through illustrative exper- 
iments. 

Key words: Service continuity, networked control, distributed real-time, 
component management, fault tolerance, Etherware. 

1    Introduction 

The ability to tolerate changes is a fundamental quality of a sustainable dynamic 
system. The useful lifetime of a system is determined to a large extent by its 
ability to respond to changes in its operating conditions. However, it is imprac- 
tical to anticipate all such changes before a system is deployed. Instead, systems 
are often designed to be able to evolve and dynamically adapt to changes in 
their operating conditions. Software systems are particularly malleable due to 
the "program as data" concept introduced by the Von Neumann architecture. 
Indeed, systems software such as operating systems and middleware have been 
developed to manage application software. This is the basis of most dynamically 
evolvable software systems today. 

Large distributed apphcations are typically developed as networks of coordi- 
nating components using middleware. Component life-cycles are managed using 
service interfaces provided by the middleware. Components also provide services 
to each other, and this forms the basis of their interaction. In essence, each com- 
ponent interacts with the rest of the system by providing and consuming services. 
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However, changes in operating conditions may cause some of these services to 
be affected. Since components usually depend on the availability of services for 
proper operation, it becomes necessary to continue to provide some service, even 
in the presence of changes. Hence, service continuity is a key requirement that 
needs to be addressed for the sustainability of such applications. 

Key innovations in middleware promote service continuity in various ways. 
Publish-subscribe niiddleware {[14], [4]) permits servers to be changed without 
clients having to monitor these changes. Adaptive and reflective middleware ([3], 
[11]) allows components to modify system configuration, and change their own 
behavior, while still maintaining service to their clients. Aspect-oriented middle- 
ware ([7], [15]) promotes separation of concerns. Aspects addressing a concern 
such as security, can be added to or removed from component structures, with- 
out affecting the services that they provide. Middleware for mobile computing 
([13]) addresses continuity of service even during component mobility and sys- 
tem reconfiguration. Thus, much of current research in middleware focuses on 
maintaining service continuity during change. 

Our focus is on networked control systems, which are composed of sensors, ac- 
tuators, and computers that coordinate over a network, to control a distributed 
real-time system. Such systems represent a convergence of control with com- 
munication and computing, and constitute a logical next step in the evolution 
of networked systems such as the Internet. Since these systems directly inter- 
act with the real world, they are subject to drastic and often unpredictable 
changes. The systems have to preserve operational integrity in the presence of 
such changes. The concept of operational integrity captures key non-functional 
requirements such as safety, availability, and robustness for such systems. To 
address this, we present Etherware - a middleware for networked control, which 
we have developed in the IT Convergence Lab at the University of Illinois. 

This paper makes three main contributions. First, the notion of operational 
mtegrity for networked control is developed, and the main challenges to main- 
tain it are identified. Service continuity is shown to be the key requirement in 
middleware to support operational integrity for such systems. Second, several 
middleware issues involved in operational integrity are identified, their influence 
on the design of Etherware is considered, and its support for service continuity 
is detailed. A key contribution is the ability to maintain communication chan- 
nels during component restarts. Finally, a traffic control testbed developed using 
Etherware is described, and experiments on performance of service continuity 
for this application are presented. 

The presentation is organized as follows. Section 2 defines operational in- 
tegrity for networked control, and presents key challenges involved. Section 3 
addresses the importance of service continuity, middleware design issues, and 
choices for Etherware. The programming model of Etherware, its architecture, 
and details about its support for service continuity, are presented in Section 4. A 
description of our traffic control testbed is provided in Section 5, followed by a 
presentation of co-design of our application and features in Etherware. Details of 
experiments to test the support for service continuity in Etherware, are provided 



in Section 6. Our contributions are placed in the context of related research in 
Section 7, and Section 8 concludes. 

2    Operational Integrity in Networked Control 

This section introduces the notion of operational integrity for networked con- 
trol systems. The various changes in such systems are classified. The ability to 
tolerate such changes is presented as a key challenge in maintaining operational 
integrity for such systems. 
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Fig. 1. Schematic of a networked control system 

2.1    Operational Integrity 

Networked control software interacts with a distributed real-time system, usually 
called a plant. Sensors provide feedback about the plant behavior. This sensor 
feedback is used by computers running control programs to generate actuator 
commands that accomplish desired goals. Actuators implement these commands 
to control the plant. As shown in Figure 1, sensors and actuators constitute 
the interface between the software and the real world. Also, the controller is 
typically implemented as a set of software components operating over a network 
of computers. 

The goals provided to the controller specify the objectives to be achieved 
during plant operation. An important part of these goals is a set of safety cri- 
teria that ensure that the plant operates in a "safe" region. For example, in a 
traffic control system, a safety criterion would be to maintain a given separation 
distance between any two cars. This would ensure that there are no collisions 
between cars. In general, safety criteria depend on specific applications and are 
usually part of the system specification. 

We now define these notions more precisely. The set of variables used to model 
a plant is called its state vector, and the variables are called its state variables. 
The values of state variables of a plant, at a given point in time, represent its 



state. The set of values that the state space variables of a plant can take, is 
called its state space. The safe state space of a plant, at a given point in time, 
is the subset of its state space that is specified by the set of safety criteria in its 
specification. Note that the safe state space may vary with time. 

In most networked control systems, however, it is not sufficient to just main- 
tain the system in its safe state space. For example, in the above traffic control 
system, a safe response to a software failure on one car, would be to stop all 
cars. This would ensure safety, but it is not the desired response. Hence, a key 
requirement is to maintain safety without affecting the operation of the system. 
This can be captured with the following notions. Operational capability is the 
ability of a system to achieve the goals assigned to it. By operational integrity, 
we will mean the property that the state of the plant in a system is always main- 
tained in its safe state space with minimum effect on the operational capability 
of the system. 

2.2    Changes in networked control systems 

Networked control systems are subject to various changes during their operation. 
The changes usually affect one or more components directly. If not handled 
properly, the changes could further disrupt the operation of other dependent 
components. Hence, the key challenge in maintaining operational integrity is to 
minimize the impact of such changes. 

The changes occurring in networked control systems can be classified as vol- 
untary or involuntary. Voluntary changes are intentionally introduced by a sys- 
tem operator. Component upgrades and configuration changes constitute the 
principal voluntary changes and may affect one or more of the following: 

- Syntax: An upgraded component may require syntactic changes such as 
additional functions or parameters in a service interface. For example, a new 
controller may require additional information in the updates that it gets 
from the sensors. 

- Semantics: Changes in operational semantics may be triggered by changes 
in operating conditions or upgrades. For example, on detecting a safety vi- 
olation, the respective controller components may communicate directly to 
avoid it. Such fault avoidance algorithms may need to be upgraded as the 
system evolves. 

- Communication: Components may need to be added to established com- 
munication channels at run time. For example, if updates from a sensor 
are too noisy, then a filter may need to be added to reduce this noise. How- 
ever, this should not require the controller to re-establish the communication 
channel to the sensor. 
Components may also want to change quality of service parameters of com- 
munication channels. For example, components in wireless networks may 
want to trade-off reliability for lower delay as shown in [2]. Changes in net- 
work topologies could also affect connections between components. 



- Timing: Changes in operating conditions could cause related changes in 
timing requirements. For example, the controller may need updates at a 
higher frequency when approaching critical conditions. 

- Location: Components may be migrated for better utilization of resources. 
For example, suppose feedback from a sensor is a lot more frequent than 
any other communication involving a controller component. The component 
could then be migrated to the same node as the sensor to reduce network 
communication traffic. 

Involuntary changes are caused by events in the operating environment be- 
yond operator control. These include the following: 

- Passive failures: These include component crashes due to exceptions, node 
faults, and failure in communication links. 

- Active failures: These are usually caused by mis-configured or erroneous 
components. Another source of active failures is operator mistakes during 
system reconfiguration. 

- Byzantine failures: These are caused by malicious components and are 
usually the hardest changes to cope with. 

To maintain operational integrity, the above changes must be handled dy- 
namically, and their impact on the system's operational capability must be min- 
imized. 

Notably, active and byzantine failures require semantic information and have 
to be handled by application specific mechanisms. However, as we demonstrate 
in the rest of the paper, the other changes can be handled in middleware. 

3    Service continuity 

This section considers the problem of maintaining operational integrity in net- 
worked control. To address this, support for service continuity is presented as 
the main requirement in middleware. Various issues involved in providing such 
support are discussed, and their influence on design choices in Etherware are 
presented. 

3.1    Maintaining Operational Integrity 

Middleware based systems are typically developed as a set of coordinating com- 
ponents that interact by providing and consuming services. For networked con- 
trol systems in particukr, some of these services may be critical for the opera- 
tion of a component. For example, the controller in Figure 1 depends on getting 
feedback from the sensors. Controls are usually discrete and calibration is im- 
perfect. Hence, any changes in this feedback service could result in serious faults 
in the operation of the controller. Hence, continuity of the feedback service is 
imperative to the operation of the controller. Similarly, the actuators depend on 
receiving controls from the controller. 



Apart from topology reconfiguration, most of the changes listed in Section 
2.2 occur at one or more related components. There is little that can be done in 
middleware to prevent such changes from affecting the respective components. 
However, the impact of these changes on other dependent components can be 
minimized. For example, an exception raised in a controller component may 
cause it to terminate. However, if it is restarted correctly and within a specified 
time-bound, this fault will not seriously affect the operation of the rest of the 
system. Such support can be easily provided in middleware. However, the possi- 
ble support in middleware may be more restricted in pathological cases such as 
active and byzantine failures. In such situations, typically, application specific 
mechanisms are also necessary. 

In general, apart from acute failures requiring application specific mecha- 
nisms, the impact of most changes can be limited to associated components by 
suitable support from middleware. This mainly consists of maintaining conti- 
nuity of services consumed and provided by the affected components. Hence, 
support for service continuity is the primary feature required in middleware for 
maintaining operational integrity in networked control. 

3.2    Design considerations for Service Continuity 

Networked control systems have fairly strict safety requirements, and so, compo- 
nents have to respond to changes as soon as possible. For example, on detecting 
a safety violation, a controller component may not be able to wait for an ac- 
knowledgment from another remote component before it decides to take some 
safe action. On a wireless channel in particular, delays can be fairly large due to 
interference and fluctuating channel conditions. Hence, to maintain operational 
integrity, components must be able to operate asynchronously. 

Another important consideration is the presence of dependencies in push- 
based communication channels. For example, the controller cannot wait for the 
updates from the sensor before sending controls to the actuator. In particular, 
updates may be delayed or lost due to communication failures in a wireless 
link. Synchronous communication would require such components to be multi- 
threaded, or use a fairly complex design involving poller objects for each sensor. 
Asynchronous operation, on the other hand, eliminates this source of complexity. 
Based on these considerations, Etherware has been developed as an asynchronous 
event based middleware. 

Event based communication requires a specification of event format. Support 
for dynamic changes in syntax requires this specification to be flexible and exten- 
sible. Service continuity requires this specification to be backward compatible. 
Based on these requirements, we have used XML [5] as the language for events. 
All communication in Etherware is through events, which are well-formed XML 
documents with appropriately defined and extensible formats. For platform in- 
dependence and due to availability of support for XML, Etherware has been 
implemented using Java. 

Key components may terminate due to voluntary upgrades or involuntary 
failures. To maintain operational integrity, components need to be restarted and 



operational within application specified deadlines. For example, if a controller is 
restarted, it should know the current state of the plant, as this information may 
not be entirely available from sensor feedback. Check-pointing is a commonly 
used technique to address this requirement. Necessary state is periodically check- 
pointed so that components can be restarted with reasonably current state. To 
support this, check-pointing has been closely integrated with Etherware design 
and is provided as a basic service. 

Components typically maintain several communication channels with other 
components. For service continuity, restarting or updating such components 
should not require these channels to be re-established. Consequently, commu- 
nication channels should be maintained despite such changes. This is also sup- 
ported in Etherware. In particular, identifiers for communication channels can 
be saved as part of check-pointed state. This allows restarted or upgraded com- 
ponents to continue using previously established channels. This also provides 
communication continuity to other components during these changes. 

The necessity to support efficient components restarts has also motivated 
another basic design choice in Etherware. All components on a given node are 
managed by a single kernel process With separate threads for components if 
required. Further, services provided by the middleware also need to be easily 
restartable and upgradeable. Moreover, invariant aspects of the middleware that 
cannot be changed dynamically, have to be minimized for maximum flexibility. 
This has motivated us to adopt a micro-kernel [20] based design for Etherware. 
This philosophy of flexibility has also resulted in the development of a bare 
minimum functional interface for components to interact with the middleware. 
For flexibility and uniformity, all interaction with middleware services is event 
based. 

As we show in the remaining sections, the above design choices have Enabled 
a relatively simple Etherware architecture that provides service continuity by 
tolerating changes listed in Section 2.2. 

4    Etherware 

This section describes Etherware, our middleware for networked control. The 
programming model and the architecture of Etherware are presented. Mech- 
anisms for supporting service continuity in Etherware, in the presence of the 
changes described in Section 2.2, is detailed. 

4.1    Etherware Programming Model 

Etherware is an asynchronous event-based middleware. Components communi- 
cate by exchanging events which are XML documents, as noted in Section 3.2. 
Etherware provides a hierarchy of classes that are used to manipulate theSe doc- 
uments. The root of this hierarchy is the EtherEvent class that provides various 
primitives to manipulate the underlying XML document. AppUcation defined 
events are required to be subclasses of EtherEvent. 



Two basic problems attending event delivery in distributed systems are dis- 
covery and identification of destination components. The identification problem 
is solved in Etherware by associating a globally unique id, called a Binding, to 
each component. The discovery problem is solved by associating profiles to ad- 
dressable components. Each component that needs to be addressed, registers a 
profile with the middleware. 

A profile describes the set of services that a component provides. For ex- 
ample, a profile for a vision sensor could specify that the sensor is a gray-scale 
camera that covers the region between the points (0,0) and (100,50) in an ap- 
propriate coordinate space. Suppose a car controller knows the location of its 
car to be within coordinates (25,37) and (45,52). It could use this information to 
connect to a relevant vision sensor using an appropriately defined profile request. 
Etherware would then match this profile with the profile of the Vision Sensor 
and forward the connection request to it. Note that the car controller need not 
specify the type of camera, as this is irrelevant to the service it needs. In general, 
suitable matching rules have been defined to match profiles. 

All EtherEvents have the following three XML tags: 

- Profile: This identifies the recipient of the event. A profile can be a service 
description as above or the globally unique Binding of a component. 

- Content: This represents the contents of the event. All appUcation specific 
information is contained in this tag. 

- Time-stamp: Each EtherEvent has a time-stamp associated with it. As 
an event moves from one node to another, the time-stamp is automatically 
translated to the local time of the destination. 

By default, EtherEvents are delivered reliably and in order. However, there 
may be event streams that need to be delivered using other specifications. To 
identify and manipulate a stream of events as a separate entity, Etherware in- 
troduces the notion of an EventPipe. A component can open an EventPipe to 
another component and send events through it. EventPipes have settings that 
can be used to specify how events are delivered through them. For example, 
the car controller can tolerate a few lost sensor updates for lower delay, but has 
no use for old updates. Hence, the vision sensor could open an EventPipe to 
the car controller requesting unrehable in-order delivery. This means that events 
along this pipe will not be retransmitted if lost, and events arriving late will be 
discarded. 

It may be necessary to modify events in an EventPipe in response to changes 
in operating conditions. For example, updates from the vision sensor could get 
noisy due to bad lighting conditions. We should be able to filter out this noise 
without having to change the sensor or the controller. Etherware supports this 
by adding Filters to EventPipes dynamically. Figure 2 shows the effective con- 
figuration after a Kalman filter has been added to the event pipe between the 
vision sensor and the car controller. Filters can also be added to intercept all 
events sent to or received by a component. 

A component in Etherware is called an EventHandler, as it operates by pro- 
ducing and consuming events. The design of a generic EventHandler is shown in 
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Figure 3. This is based on several design patterns [8] that address issues raised 
in Sections 2.2 and 3.2, where "a design pattern is a solution to a problem in 
a context" [8]. In software development, several problems may have a common 
recurring theme. Design patterns represent solutions to such problems that ex- 
ploit the recurring theme. However, the solutions need to elaborated based on 
the context of the given problem. We now consider the various problems to be 
solved in the design of EventHandler and describe how these are addressed using 
the appropriate design patterns: 

- Memento: Support for restarts and upgrades requires the ability to capture 
appUcation state. This is solved by the Memento pattern, wherein component 
state can be check-pointed and restored on reinitialization. 

- Strategy: Service continuity requires the ability to replace components 
without disrupting service. In particular, if the functional interface used to 
communicate with the component is invariant, then EventHandlers can be 
replaced dynamically. In this case, the strategy pattern in used in conjunc- 
tion with the Memento pattern. 

- Facade: Interaction with various services in the middleware usually requires 
a component to invoke different sub-systems. This may lead to unnecessary 
dependencies between the component and middleware sub-systems. This is 
eliminated by using the Facade pattern to provide a uniform middleware 
service interface for the components. 



EventHandlers can be active or passive. Passive EventHandlers do not have 
any active threads of control. They only respond to incoming events by process- 
ing them appropriately and generating resulting events if any. 

The interface for a passive EventHandler is as follows: 

interface PassiveEventHandler { 
/** Initialize the event handler with a given memento */ 
public EtherEventList initialize(EtherEvent memento); 

/*♦ Process a given event */ 
public EtherEventList processEvent(EtherEvent event); 

/** Terminate process and return a memento if any */ 
public EtherEventList terminate(); 

>    , 

The memento of an EventHandler is also defined as a sub-class of EtherEvent. 
When EventHandlers are instantiated or restarted, the first function called is 
mitializeQ, whose parameter is its memento. This provides a uniform mech- 
anism to initialize as well as restart components. On receiving an EtherEvent 
addressed to this EventHandler, the function processEventQ is called. For ter- 
mination, upgrade, or migration, the function terminateQ is called. All three 
functions can return one or more EtherEvents addressed to other EventHandlers 
or the middleware itself. The terminateQ function, in particular, may return a 
memento event, representing a check-point for reinitialization. 

Active EventHandlers have one or more active threads of control. They can 
generate events based on activities in their individual threads of control. The 
interface for an active EventHandler extends PassiveHandlerlnterface by in- 
cluding an activateQ function. This is called to activate additional thread(s) in 
the EventHandler. 

4.2    Etherware Architecture 

The architecture of Etherware is based on the micro-kernel concept, as shown in 
Figure 4. The Kernel represents the minimum invariant in Etherware. All other 
services are implemented as EventHandlers. 

The Kernel manages all EventHandlers in a given process. In the current 
implementation, we have one Etherware process per node. The basic function of 
the Kernel is to deliver events between its (local) EventHandlers. The Kernel also 
exposes a service interface, which can be used to manipulate the EventHandlers 
managed by it. The Kernel has a Scheduler thaX is responsible for scheduling all 
events and threads. The Scheduler can be replaced dyiiamically. 

As illustrated in Figure 4, each EventHandler is encapsulated in its own Shell. 
A Shell presents a facade to the EventHandler and provides a uniform interface 
for it to interact with the rest of the system. Shells also encapsulate EventHandler 
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Fig. 4. Architecture of Etherware 

specific information such as configurations of EventPipes. Activities involved in 
component restart, upgrade, and migration are also handled in Shells. 

AH other functionality in Etherware is provided by service EventHandlers. 
The following basic services are used during normal operation of Etherware. 

- Profiler: The Profiler is used to register and look-up profiles of Even- 
tHandlers. It is equivalent to a name service. 

- RemoteBus: The RemoteBus encapsulates all communication with remote 
nodes over the network. This includes details such as IP addresses, ports, 
and transport layer protocols. All EtherEvents addressed to remote Even- 
tHandlers are forwarded by the Kernel to the RemoteBus. The RemoteBus is 
an active EventHandler with separate threads to receive events from remote 
nodes. 

- Timer: The Timer service is used to translate time-stamps of EtherEvents 
as they are transmitted from one node to another. To implement this, the 
Timer is added as a Filter for all events that are sent to and received from 
the RemoteBus. Time translation is based on computing clock offsets using 
the Control Time Protocol [9]. 

- Ticker: The Ticker is mostly used by passive EventHandlers for periodic 
activations. For example, the car controller operates at 10 Hz and has been 
implemented as a passive EventHandler. For periodic activation, it registers 
with the Ticker to receive periodic tick events at 100ms intervals. The Ticker 
can also send one-time alarm events. The Ticker is an active EventHandler. 

Since the above services have been implemented as EventHandlers, they can 
also be restarted or updated dynamically. 

4.3    Etherware support for Service Continuity 

We now consider how Etherware provides service continuity to support most of 
the changes fisted in Section 2.2. 

- Restarts and upgrades: In networked control, it is necessary to inform 
appUcations about changes such as component upgrades or migration. For 



example, if a controller is upgraded, the new controller must know about 
the current state of the plant. This requires the state of the old controller 
to be check-pointed before termination. Similarly, migration of a controller 
component would involve changes in loop delay. This would require changes 
in parameters such as control gain. Hence, if the controller is migrated with- 
out such knowledge, then the plant may become unstable, and thus violate 
operational integrity of the system. To support this, the EventHandler in- 
terface described in Section 4.1 has a terminate^) function, which is called 
to check-point state and inform the EventHandler about possible upgrade 
or migration. 
Syntax changes: As discussed in Section 4.1, the functional interface for 
EventHandlers is simple, uniform, and not expected to change during most 
operation. Hence, the key source of syntactic change during component 
upgrade is the formats of events that are consumed and produced by it. 
However, since event formats are specifications of XML documents, format 
changes are easily supported. Further, interaction with the underlying XML 
documents is usually abstracted away by defining appropriate subclasses of 
EtherEvent. This enables backward compatibility to be addressed using in- 
heritance. 
Semantic changes: Service continuity during semantic changes requires a 
formal specification of application semantics. We are currently working on a 
formal specification language for Etherware applications. 
Communication chsinges: Changes in communication topologies are sup- 
ported by Filters and check-point based migration of EventHandlers. Events 
can be intercepted by defining appropriate Filters. The addition and dele- 
tion of Filters does not require the sender or the receiver of the events to be 
involved. Similarly, migration of EventHandlers does not require communi- 
cating components to be informed. 
Timing changes: Changes in timing requirements of event delivery are sup- 
ported by the use of EventPipes. As indicated in Section 4.1, timing behavior 
of individual threads can be manipulated using the AbstractScheduler in- 
terface. However, Etherware does not yet support hard real-time deadlines, 
as our target application operates in soft-real time. 
Location changes: Location transparency is supported by globally unique 
Bindings of EventHandlers. 
Component failures: Passive failures such as component exceptions are 
supported by check-pointing and restart mechanisms in Shells, as noted in 
Section 4.2. A node failure, on the other hand, triggers appropriate excep- 
tion events informing remote components connected to EventHandlers on 
the failed node. These exceptions can be used to handle node failures in ap- 
phcation code. For example, all Etherware services described in Section 4.2 
are designed to tolerate node restarts. 
Other failures: Active and Byzantine failures involve appUcation specific 
mechanisms and comprehensive support for such changes has not yet been 
provided in Etherware. 



The performance of these mechanisms has been tested through experiments 
on a prototype traffic control apphcation. Tfie details are presented in following 
sections. 

5    Prototype System 

This section presents the prototype traffic control system that has been im- 
plemented using Etherware. Issues involved in co-design of Etherware and the 
application are considered. 
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Fig. 5. A Prototype Networked Control System 

5.1    Traffic Control Testbed 

Figure 5(a) illustrates our traffic control testbed, which is a prototype networked 
control system. This system consists of a set of remote controlled cars that are 
driven on a track. Each car is controlled by a dedicated laptop via radio control. 
A car is driven by controlling its nominal speed and steering angle. Feedback 
is provided by two ceiUng mounted cameras that cover different overlapping 
portions of the track. The video feed from these cameras is processed by dedi- 
cated desktops to track the cars. The computers can communicate using wired 
or 802.11 wireless networks. 

A basic design for the testbed, with three layers of control, is shown in Figure 
5(b). Based on desired trajectories of different cars, the supervisor provides goals 
to the individual car controllers. The goals are sequences of timed locations on 
the track, called way-points. The individual car controller computes controls to 
drive the car along these way-points, and sends them to the associated actuator. 
The actuator controls the car according to the given controls. The vision sensors 
provide feedback on positions and orientations of cars to the supervisor and the 
controllers. 



A basic safety criterion for this system is to avoid collisions between cars. 
While the supervisor determines way-points to avoid collisions, numerous changes 
could still cause collisions to occur. For example, car collisions could occur due 
to failure of the vision sensor, the controller, or the communication link between 
them. 

We can apply the concepts introduced in Section 2.1 to model this system. 
The plant of a car controller is the car that it controls. The state variables of the 
plant are the location, orientation, speed, and steering angle of the car. Similarly, 
the plant of the supervisor is the set of cars that it supervises. In the testbed, 
vision sensors monitor locations and orientations of cars. However, a car's speed 
and steering angle are not monitored. Given this model, operational integrity 
of the system could require that a minimum distance be maintained between 
locations of cars, without affecting the ability to control the cars. 
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Fig. 6. Modified traffic testbed design 

5.2    Issues in Co-design 

Networked control systems operate under highly varying conditions. In partic- 
ular, wireless channels are prone to interference, noise and fading. This leads 
to unpredictable packet delays and unreliable links. Such problems cannot be 
entirely addressed in middleware. Rather, maintaining operational integrity dur- 
ing such changes requires application aware mechanisms. For example, in Figure 
5(b), a wireless link between the vision sensor and car controller could be lost for 
a couple of seconds. To maintain operational integrity, the car controller must 
still be able to control the car using open loop control. 

To operate over a wireless network, we need to modify the testbed design of 
Figure 5(b) to tolerate unpredictable delays and link failures. Figure 6 presents 
our modified design. The car controller uses a local state estimator to tolerate 



noise and jitter in updates from the vision sensor. The state estimator uses a 
Kalman filter [12] to estimate the current state of the car based on sensor updates 
and controls sent to the actuator. The estimator can continue to estimate the 
state of the car even if the link to the vision sensor goes down temporarily. This 
allows the car controller to tolerate link and component failures in its connection 
to the vision sensor. 

The actuator uses a local control buffer to tolerate changes in the controller. 
The controller sends a sequence of commands to the actuator every 100 ms. 
Each sequence has commands for the next two seconds. Hence, the actuator can 
continue operating the car for two geconds before it needs a new sequence of 
commands from the controller. However, since the sequence of future commands 
from the controller is based on imperfect calibration and discrete controls, the 
safety deadline is usually lesser than two seconds. A similar control buffer isolates 
the car controller from changes in the supervisor. 

The key point is that, the above design is a result of the necessity to main- 
tain operational integrity despite delays, faults, and link failures. These are part 
of the system operating conditions and must be addressed by application de- 
sign. Middleware support alone would hot be able to provide necessary service 
continuity without such mechanisms in the application. 

Based on the flexibility afforded by this design, the testbed has been imple- 
mented using soft real time control. This also allows Etherware to operate over a 
general purpose operating system without requiring support for hard deadlines. 
Consequently, we have focused more on mechanisms, described in Section 4; to 
support service continuity in the presence of faults and software upgrades. As 
demonstrated in Section 6, the loss of service due to software restarts or up- 
grades is minimized by this support, and the involved transients can be easily 
tolerated by our application. 

6    Evaluation 

This section presents two experiments evaluating the performance of Etherware 
mechanisms for service continuity. The first experiment tests an involuntary 
change involving a component restart, and the second evaluates a voluntary 
change represented by a component upgrade. Observed results are related to 
Etherware mechanisms from Section 4. 

6.1    Experimental Configuration 

From Figure 5(b), we see that the controller is the most constrained component 
in the traffic testbed.The controller operates under the tightest deadUnes and 
has the highest interconnection complexity in the system. Consequently, changes 
affecting the controller represent the greatest stress that can be applied to this 
system. Hence, in the following experiments, we will consider restarting and 
upgrading the controller while the system is operating. For both experiments, 
the desired trajectory of the car is the oval shown in Figure 7(b). 
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Fig. 7. Experimental setup 

Figure 7(a) shows the configuration used to conduct the experiments de- 
scribed in this section. As the controller itself is being affected, we cannot use 
it to record the experimental trace. Hence, an Observer has been added to the 
testbed design of Figure 5(b). It monitors the desired trajectory, ahd the actual 
position of the car based on vision upgrades, and produces the traces that we an- 
alyze. The Observer and the Supervisor were executed on the same node, while 
all other components were executed on separate computers. All communication 
was on a dedicated wired network. 

6.2    Controller Restarts 

In this experiment, the controller was restarted several times as the car was 
being driven along the trajectory shown in Figure 7(b). Faults were injected at 
random by performing an illegal operation (divide by zero) in the Controller. 
Such a fault caused the Controller to raise an exception and be restarted by 
Etherware. 

The observations for this experiment are displayed as the first column of plots 
in Figure 8. Figures 8(a) and 8(c) plot the x and y coordinates of the car posi- 
tion, in millimeters, as a function of time. The dotted lines indicate the desired 
trajectory. The deviation of the actual car positions from the desired trajectory, 
as a function of time, is shown in Figure 8(e). The plots are time correlated and 
a vertical line passing through the three plots identifies the x and y coordinates, 
as well as the deviation, at a given point in time. Restarts are indicated by the 
pointers in Figure 8(e), and the accompanying numbers indicate, in millisec- 
onds, the time for restart. These are timestamps at the Observer and include 
communication and synchronization times between the restarted Controller and 
the Observer. 
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Fig. 8. Experimental Results for Controller restarts and upgrade 



During the first three iterations of the oval, the Controller was operating 
normally and we see that the car position tracked the desired trajectory fairly 
well. The first restart occurred at about 70 seconds into the experiment, and was 
followed by two other restarts in the next 20 seconds. The last three faults were 
also handled by the restart mechanisms in Etherware. We see that the error in 
the car position during these restarts was within the system error bounds during 
normal operation. 

Two of the Etherware mechanisms described in Section 4 contributed to 
the quick recoveries. First, the Shell intercepted exceptions thrown due to the 
Controller faults, and restarted it without affecting the EventPipe connections 
to the other components. Second, before termination, the Controller state was 
check-pointed according to the Memento pattern, and this check-point was then 
used for reinitialization. 

To illustrate the impact of these two mechanisms, we restarted the Ether- 
ware process managing the Controller at about 100 seconds after the start. We 
see that the restart of Etherware and the Controller took about three seconds, 
during which the car position accumulated a large error of about 0.8 meters. 
This illustrates the necessity for efficient restarts. Furthermore, even though the 
Controller restarted after three seconds, additional error was accumulated be- 
fore recovery. This was so because, the Controller had to reconnect to the other 
components, rebuild the state of the car, and bring it back on track. This is the 
improvement that has been achieved by the check-pointing mechanism. 

6.3    Controller Upgrade 

In the second experiment, we tested the performance of software upgrade mech- 
anisms in Etherware. The observations for this experiment are shown as the 
second column of plots in Figure 8. The format of these plots is similar to the 
plots of Section 6.2. 

The car is initially controlled by a coarse Controller that operates myopically. 
Etherware is then commanded, at about 90 seconds after the start, to upgrade 
the coarse Controller to a better model predictive Controller. We can easily see 
the improvement in the car operation. The involved transients are within the 
system error bounds as well. 

This functionality is due to three key Etherware mechanisms from Section 4. 
First, the Strategy pattern allows one Controller to be replaced by another with- 
out any changes to the rest of the system. Second, the Shell is able to upgrade 
the Controller without affecting the connections to the other components. Fi- 
nally, the Memento pattern allows the coarse Controller to check-point its state 
before termination. This is then used to initialize the new Controller. The first 
mechanism allows for simple upgrades, while the other two mechanisms mini- 
mize the impact of the upgrade on other components and the car operation, as 
shown in Section 6.2. 

These experiments clearly demonstrate the need for, and the effectiveness of, 
Etherware support for service continuity. 



7 Related Work 

This section presents an overview of related earlier work in this area. 
Simplex [19] is an elegant architecture that supports safe dynamic upgrades 

of control software. Simplex can tolerate timing and semantic faults, and pro- 
vides run-time error containment using process address space separation. How- 
ever, component restarts or upgrades still require communication channels to 
be re-established, and this may affect operational integrity. Support for such 
functionality could be provided by Etherware as it maintains channels such as 
EventPipes in the presence of such changes. Designing a class of monitored 
EventHandlers, based on the Simplex architecture, is an aspect of our current 
research. 

Fault-tolerant CORBA (FT-CORBA) [6] is the primary OMG specification 
that addresses fault tolerance in distributed systems. The key mechanism in FT- 
CORBA is to support fault tolerance through redundancy of entities. However, a 
key problem with this model is that, since replicas execute the same algorithms 
and have the same inputs, they will have similar failures due to application 
errors. Hence, safe component restarts is also necessary to support such failures. 
Some of the other problems that need to be addressed, before FT-CORBA can 
be used for distributed real-time systems, are considered in [16]. 

Software frameworks and middleware for networked control in general, are 
areas of active research. Open Control Platform (OCP) [21] is a Real-Time 
CORBA [17] based middleware for reconfigurable control systems. Currently 
OCP is being developed as a software platform for unmanned aerial vehicles 
(UAVs). While OCP supports service continuity during component and service 
re-configuration, mechanisms to tolerate faults in application software are not 
provided. Detailed surveys of related efforts are presented in [18] and [10]. 

As noted in Section 4.3, support for semantic changes requires a formal spec- 
ification of application semantics. The development of a formal specification 
language for Etherware is part of current research. On a related note, the pro- 
gramming model of Etherware is similar to the Actor model of concurrent com- 
putation [1]. Like Actors, EventHandlers communicate by sending and receiving 
events which are buffered in Etherware until consumed. They both have glob- 
ally unique-ids and modifiable behavior. Based on this. Actors could be used to 
model and analyze the behavior of Etherware based systems. 

8 Conclusions 

We have focused on supporting operational integrity in networked control sys- 
tems. Possible changes occurring in such systems have been classified and illus- 
trated. Service continuity during these changes, has been introduced as a key 
middleware feature for maintaining operational integrity. 

We have presented design considerations in Etherware, our middleware for 
networked control, and shown how these support service continuity during vari- 
ous changes. The performance of Etherware, during some of these changes, has 
been evaluated through experiments on a traflSc control testbed. 
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